Question: Same Values In Limma/Microarray Differential Expression
0
gravatar for Wan Fahmi
3 months ago by
Wan Fahmi0
United Kingdom
Wan Fahmi0 wrote:

Hello, I run limma for the differential expression of microarray microRNA data. I just wondering why am I getting the same value for the top list at least for 20 - 50 probeset. Is this a weird output from limma?

The code as below:

dat <- read.celfiles(list.celfiles("raw_data_dir"))
eset <- oligo::rma(dat)
design <- model.matrix(~0+Exp)
colnames(design)
fit <- lmFit(eset, design)
fit <- eBayes(fit, trend=TRUE, robust=TRUE)
results <- decideTests(fit, adjust.method="BH",p.value=0.05,lfc=2)

Here is the output of limma:

> topTable(fit, coef=NULL, number=10, genelist=fit$genes, adjust.method="BH",
+          sort.by="B", resort.by=NULL, p.value=1, lfc=0, confint=FALSE)
                ExpEarlyOnset ExpLateOnset  AveExpr        F      P.Value    adj.P.Val
MIMAT0002177_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
MIMAT0003130_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
MIMAT0006344_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
MIMAT0008160_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
MIMAT0009329_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
MIMAT0013186_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
MIMAT0013886_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
MIMAT0014943_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
MIMAT0015904_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
MIMAT0023967_st      14.67058      14.6916 14.67923 122330.9 2.027378e-54 6.700116e-51
ADD COMMENTlink modified 3 months ago by RamRS21k • written 3 months ago by Wan Fahmi0

This should be a Question, not a Forum discussion. I've made the changes now, but please be more mindful in the future.

ADD REPLYlink written 3 months ago by RamRS21k

There is a previous answer HERE; however, in your case, both the p- and adjusted p-values are the same.

I have seen this in the past with datasets of low sample n. There could also be an issue with the probe design on the microarray that you're using.

One question: why are you using trend=TRUE and robust=TRUE?

ADD REPLYlink written 3 months ago by Kevin Blighe41k
Please log in to add an answer.

Help
Access

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.
Powered by Biostar version 2.3.0
Traffic: 1685 users visited in the last hour