Sequence Pair Alignment in Python. Local and Global Sequence Alignment.
0
1
Entering edit mode
4.4 years ago

Hi !

I'm trying to create a code, capable of sequencing 2 sequences, globaly and localy. This is what i have so far:

from Bio import SeqIO, Seq
from Bio.SeqIO import read
from Bio.SeqRecord import SeqRecord
from Bio.Seq import Seq
from Bio.Alphabet import generic_dna, generic_protein
from Bio.Align import substitution_matrices
# https://www.tutorialspoint.com/biopython/index.htm <- bons tutoriais!
# http://biopython.org/DIST/docs/api/Bio.SeqIO-module.html <- parse das sequencias

# http://biopython.org/DIST/docs/api/Bio.Seq.Seq-class.html
# http://biopython.org/DIST/docs/tutorial/Tutorial.html

class Alignment():
    def __init__(self, submat, gap=-1):
        self.sm = submat
        self.g = gap
        self.seq1 = None
        self.seq2 = None
        self.S = None
        self.T = None


    def score_pos (self, c1, c2):
        if c1 == "-" or c2=="-":
            return self.g
        else:
            return self.sm[c1,c2]


    def needleman_Wunsch(self, seq1, seq2):
        if (seq1.alphabet != seq2.alphabet): return None 
        # ^ "AttributeError: 'Seq' object has no attribute 'seq_type'
        # Solution: substituí seq_type por alphabet (atributo da classe Seq)
        self.S = [[0]]
        self.T = [[0]]
        self.seq1 = seq1
        self.seq2 = seq2
        for j in range(1, len(seq2) + 1):
            self.S[0].append(self.g * j)
            self.T[0].append(3)
        for i in range(1, len(seq1) + 1):
            self.S.append([self.g * i])
            self.T.append([2])
        for i in range(0, len(seq1)):
            for j in range(len(seq2)):
                s1 = self.S[i][j] + self.score_pos(seq1[i], seq2[j])
                s2 = self.S[i][j + 1] + self.g
                s3 = self.S[i + 1][j] + self.g
                self.S[i + 1].append(max(s1, s2, s3))
                self.T[i + 1].append(max3t(s1, s2, s3))
        return self.S[len(seq1)][len(seq2)]

class Protein(Alignment):
    def __init__(self, submat, gap):
        self.prot1 = None
        self.prot2 = None
        super().__init__(submat, gap) 


# metodos não pertencentes à classe       
def max3t (v1, v2, v3):
    if v1 > v2:
        if v1 > v3: return 1
        else: return 3
    else:
        if v2 > v3: return 2
        else: return 3

def read_submat_file(filename):
    sm = {}
    f = open(filename, "r")
    line = f.readline()
    tokens = line.split("\t")
    ns = len(tokens)
    alphabet = []
    for i in range(0, ns):
        alphabet.append(tokens[i][0])
    for i in range(0, ns):
        line = f.readline()
        tokens = line.split("\t")
        for j in range(0, len(tokens)):
            k = alphabet[i] + alphabet[j]
            sm[k] = int(tokens[j])
    return sm

def printMat (mat):
    for i in range(0, len(mat)):
        print(mat[i])
# 

# config data
subMat = substitution_matrices.load("BLOSUM62") # ler matriz de subs.
#subMat = read_submat_file("blosum62.mat")
gap = -3

# sequencias a alinhar
file1 = SeqIO.read("sequence1.fasta", "fasta")
file2 = SeqIO.read("sequence2.fasta", "fasta")
seq1 = file1.seq
seq2 = file2.seq

dna_obj = Alignment(subMat, gap)

res = dna_obj.needleman_Wunsch(seq1, seq2) # res dá um numero

# o resto dá erro:
S = res[0] # IndexError: invalid index to scalar variable.
T = res[1]
print("Score of optimal alignment:", S[len(seq1)][len(seq2)])
dna_obj.print_mat(S)
dna_obj.print_mat(T)

align_obj = dna_obj.recover_align(T, seq1, seq2)
print(align_obj[0])
print(align_obj[1])

Recently i understood that, i need to add this part : return self.S[len(seq1)][len(seq2)] -> ref self.S, self.T, in order to correct and error in the substitution_matrices.load function.

But i dont know what to do next. Can anybody help me please ?!?!

Python Alignments Local Global Fasta • 2.6k views
ADD COMMENT
0
Entering edit mode

Is this for an assignment or something? I assume you know Biopython already has a very capable pairwise sequence alignment module (since you're already importing matrices)?

Any reason you're reinventing the wheel without saving yourself a dependency?

ADD REPLY
0
Entering edit mode

Yes, it is for an assignment.

ADD REPLY
0
Entering edit mode

All right you created the scoring matrix with your needleman_Wunsch function and you get the optimal score. But following lines are not needed res variable is not matrix just the score

# o resto dá erro:
S = res[0] # IndexError: invalid index to scalar variable.
T = res[1]

If you want to print the matrixes it should be something like following or printMat function needs be inside Alignment class

printMat(dna_obj.S)
printMat(dna_obj.T)

And in the following lines are for the aligned strings but recover_align function is missing in the Alignment class you need to write that function

align_obj = dna_obj.recover_align(T, seq1, seq2)
print(align_obj[0])
print(align_obj[1])
ADD REPLY
0
Entering edit mode

Thank you, i will check it out.

ADD REPLY
0
Entering edit mode

No problem. I updated my answer with some additional detail of your code.

ADD REPLY

Login before adding your answer.

Traffic: 1761 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6