Graphing timecourse data from DESeq2
Entering edit mode
15 months ago

I've got a set of samples, treated and control across multiple time points. I did DESeq with Day as design to get the genes which change nicely across the time span. I wanted to make a graph of some of those genes. The Log2 of the normalized counts, versus the time, colored by treatment, with the regression lines for each data set added.

Here's my code. I know it's not doing exactly what DESeq is doing, but it's close enough for a picture

treated_expression <- log(counts(dds_treated, normalized = TRUE)[gene_of_interest,],2)
control_expression <- log(counts(dds_Control, normalized = TRUE)[gene_of_interest,],2)

lm_treated <- lm(treated_expression ~ dds_treated@colData$Day)
lm_control <- lm(control_expression ~ dds_Control@colData$Day)

d<- plotCounts(dds, gene=gene_of_interest, intgroup=c("Treatment", "Day"), returnData = TRUE)

p <- ggplot(d, aes(x=Day, y=log(count,2), color = Condition)) + 
  geom_point(position=position_jitter(w=0.1,h=0)) + 
  labs(title = "gene_of_interest") + 
  theme(plot.title = element_text(hjust = 0.5)) 

p + geom_abline(intercept = lm_treated$coefficients[1], slope =  lm_treated$coefficients[2], color = "turquoise") +
  geom_abline(intercept = lm_control$coefficients[1], slope =  lm_control$coefficients[2],   color = "red")

And it's working more or less as I want. Unless a sample has a read count of 0. I know I could add a pseudocount before logging, or just omit the zero counts, but I was wondering if there was a a way of fixing this closer to what DESeq does. DESeq results will return me the right slope for the regression line, but I don't see how to find the intercept, which is why I recalculate the regression line.

DESeq • 302 views

Login before adding your answer.

Traffic: 2591 users visited in the last hour
Help About
Access RSS

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6