Job:PhD Position: Computational Systems Biology, The University of Memphis
Entering edit mode
24 months ago
bjdaigle ▴ 10

Supervisor: Dr. Bernie Daigle, Jr., Assistant Professor, Departments of Biological Sciences and Computer Science

Experimental biologists are generating data at an unprecedented rate. Unfortunately, biological insight has not kept pace with this deluge of data. The goal of my lab is to improve the inference of biological meaning from the wealth of experimental data collected from single cells to whole organisms. To do so, we develop sophisticated statistical and computational tools that enable integrated analyses of noisy, heterogeneous datasets. More information on the lab can be found at

Openings are available for students interested in pursuing a Ph.D. in computational systems biology starting Spring 2021. Our research in this area involves developing and applying computational methods for inferring gene regulatory networks (GRNs) from single-cell gene expression data. Current projects include applying deep learning techniques to rapidly and accurately infer GRNs from single-cell RNA-sequencing data.

The successful candidate should be highly motivated and have some Python programming experience. Prior research experience in bioinformatics and/or computational biology is desirable. Details about admission and degree requirements can be found at (PhD, Biological Sciences). Applicants must apply to both The University of Memphis Graduate School and the corresponding graduate program. To ensure full consideration, applications should be completed by September 15. Accepted students will be considered for a graduate assistantship.

If interested, please first email Dr. Daigle ( your CV and a concise statement describing your interest in the position, previous research experience, and relevant coursework.

RNA-Seq deep learning single cell networks Job • 874 views

Login before adding your answer.

Traffic: 1365 users visited in the last hour
Help About
Access RSS

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6