DESeq multiple factor question
1
0
Entering edit mode
7 weeks ago

Hi,

This is my first time using the DESeq2 package for RNA-seq analysis. I am analyzing a longitudinal study of three different time points in mice, with three different genotypes of animals - 1 wildtype, 2 mutated. I want to evaluate differential expression as an effect of the different genotypes across each age. For example, I want to evaluate differential expression in the 1 year old mice from each genotype and so on. I am confused on how I should compare expression levels across the genotypes at specific time points, using the code below

ddsHTSeq <- DESeqDataSetFromHTSeqCount(sampleTable = sampletable,
                                       directory = directory,
                                       design = ~ Age + Genotype

Any help with how to properly use "design" would be greatly appreciated!

R RNA-Seq sequencing differential-expression • 163 views
ADD COMMENT
1
Entering edit mode
7 weeks ago

With your current design, you are only evaluating the general effect of Age and the general effect of Genotype on gene expression. To be able to extract the effect of genetype on specific time points, you should consider adding an interaction to the formula:

ddsHTSeq <- DESeqDataSetFromHTSeqCount(sampleTable = sampletable,
                                       directory = directory,
                                       design = ~ Age + Genotype + Age:Genotype

Then extract relevant contrasts using the DESeq2 function results. See ?results and resultsNames(ddsHTSeq).

ADD COMMENT
0
Entering edit mode

Thank you for the help. However, when I try to include the interaction term, I get an error saying that the model matrix is not full rank. Do you know if this is an issue with the way the experiment was designed? I am attaching an image of my samples. samples
enter image description here

ADD REPLY
1
Entering edit mode

Not full rank means that you don't have every combo of all your elements.. You can't model how genotype and age interact when you are missing some age:genotype combinations. You should have done some p8 d52s.

ADD REPLY
1
Entering edit mode

Well yes, the issue is that there is no d52 Genotype of the p8 Age, so DESeq2 can not calculate the interaction between them.

ADD REPLY
0
Entering edit mode

Thank you all for the help! Do you have any suggestions on how to analyze the data given that I don't have d52 p8? Should I do the analysis separately for the p8 and then analyze the 6m and 12m together?

ADD REPLY
1
Entering edit mode

The DESea2 vignette explains what to do in case of "not full rank matrix". In your case you have an interaction level without samples, which is solvable by manually editing the model matrix, and then providing this to DESeq. See: http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#levels-without-samples

ADD REPLY
0
Entering edit mode

Thank you very much for the help! I've manually edited my matrix and then provided it to DESeq. I reordered my genotypes using ddsHTSeq_filtered$Genotype <- factor(ddsHTSeq_filtered$Genotype, levels = c("WT", "mdx", "d52"))

Now my question remains in extracting the relevant contrasts, as you mentioned. I run the resultsNames() function on my DESeq object and receive the following contrasts "Intercept" "Age6m" "Agep8" "Genotypemdx" "Genotyped52" "Age6m.Genotypemdx" "Agep8.Genotypemdx" "Age6m.Genotyped52"

I'm not sure which contrasts to use if, for example, I wanted to compare the WT and mdx gene expression at age p8. If you could help with this, it would be greatly appreciated!

ADD REPLY

Login before adding your answer.

Traffic: 2403 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6