I'll use the latest gencode GTF for humans as an example.
curl ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_36/gencode.v36.annotation.gtf.gz | \
gunzip > human_gencode_36.gtf
You can import the GTF file into R using rtracklayer::import and keep only the data from the GTF you want.
library("tidyverse")
library("rtracklayer")
gtf <- import("human_gencode_36.gtf") %>%
  as_tibble %>%
  distinct(gene_id, gene_name, gene_type)
> gtf
# A tibble: 60,660 x 3
   gene_id           gene_type                          gene_name  
   <chr>             <chr>                              <chr>      
 1 ENSG00000223972.5 transcribed_unprocessed_pseudogene DDX11L1    
 2 ENSG00000227232.5 unprocessed_pseudogene             WASH7P     
 3 ENSG00000278267.1 miRNA                              MIR6859-1  
 4 ENSG00000243485.5 lncRNA                             MIR1302-2HG
 5 ENSG00000284332.1 miRNA                              MIR1302-2  
 6 ENSG00000237613.2 lncRNA                             FAM138A    
 7 ENSG00000268020.3 unprocessed_pseudogene             OR4G4P     
 8 ENSG00000240361.2 transcribed_unprocessed_pseudogene OR4G11P    
 9 ENSG00000186092.6 protein_coding                     OR4F5      
10 ENSG00000238009.6 lncRNA                             AL627309.1 
# … with 60,650 more rows
Let's say that you have a vector of gene_ids that you wanted to get the information for.
genes <- sample(gtf$gene_id, 5)
> genes
[1] "ENSG00000287105.1"  "ENSG00000254060.1"  "ENSG00000271538.6" 
[4] "ENSG00000148399.13" "ENSG00000234648.1"
You can simply filter the imported data using this vector.
> filter(gtf, gene_id %in% genes)
# A tibble: 5 x 3
  gene_id            gene_type            gene_name 
  <chr>              <chr>                <chr>     
1 ENSG00000271538.6  lncRNA               LINC02427 
2 ENSG00000287105.1  lncRNA               AC090577.1
3 ENSG00000254060.1  lncRNA               AC022778.1
4 ENSG00000148399.13 protein_coding       DPH7      
5 ENSG00000234648.1  processed_pseudogene AL162151.2
                    
                
                 
Since you have not provided any example ID's I can't check but I suggest taking a look at RNACentral.
Thanks a lot!! Ill check it out :)