Question: K-mer scala program improvement in Apache Spark
0
gravatar for saranpons3
2.3 years ago by
saranpons370
saranpons370 wrote:

Hello Members, I have executed the following program (K-mer counter) in 2 nodes spark cluster on the data set size 10.2 GB. The amount of time it has taken to run is around 35 minutes. In another experiment, I have executed a Java program for the same K-mer counter problem in Hadoop-2 two nodes cluster. The amount of time it has taken is around 35 minutes. We know that Spark's cluster performance should be greater than Hadoop cluster. But in my case, the running time for both the cluster is same. I would like to know that In Spark cluster, am i utilizing all the available resources in 2 nodes cluster efficiently or not? Also, I would like to know that my Scala program for k-mer counter can be improvised than what i have now?

My hardware is as follows:

CPU: Intel i7 processor with 8 cores in both the machines in cluster, RAM: 8GB in both the machines in cluster, OS: Ubuntu 16.04, Harddisk capacity: Master node 1 TB and Slave node 500 GB, Nodes are connected through switch in the network, Ip address of master: 172.30.16.233, Ip address of slave: 172.30.17.15.

My execution command is as follows

spark-submit --class Kmer1 --master spark://saravanan:7077 --executor-memory 5g /home/hduser/sparkapp/target/scala-2.11/sparkapp_2.11-0.1.jar hdfs://172.30.16.233:54310//input hdfs://172.30.16.233:54310//output

My scala code is as follows:

 import org.apache.spark.SparkConf
    import org.apache.spark.SparkContext
    object Kmer1 {
      //
      def main(args: Array[String]): Unit = {
        //
        val sparkConf = new SparkConf().setAppName("Kmer1")
        val sc = new SparkContext(sparkConf)
        val input = args(0)
        val K = 25
        val broadcastK = sc.broadcast(K)
        val records = sc.textFile(input)
        val only_three = records.zipWithIndex.filter{case (_,i)=>(i+1)%4 !=0}.map{case (e,_) =>e}
        // remove the records, which are not an actual sequence data
        val filteredRDD = only_three.filter(line => {
          !( 
             line.startsWith("@") || 
             line.startsWith("+") || 
             line.startsWith(";") ||
             line.startsWith("!") || 
             line.startsWith("~") ||
             line.startsWith(">") 
           )
        })
        val kmers = filteredRDD.flatMap(_.sliding(broadcastK.value, 1).map((_, 1)))
        // find frequencies of kmers
        val kmersGrouped = kmers.reduceByKey(_ + _)
         kmersGrouped.saveAsTextFile(args(1))
        // done!
        sc.stop()
      }
    }
k-mer counter spark • 833 views
ADD COMMENTlink written 2.3 years ago by saranpons370
Please log in to add an answer.

Help
Access

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.
Powered by Biostar version 2.3.0
Traffic: 1159 users visited in the last hour