Question: cross validation output interpretation from survival analysis
0
gravatar for Palgrave
12 weeks ago by
Palgrave20
Singapore
Palgrave20 wrote:

I have performed a cross validation using the errorest function, but am not sure how to interpret the output Brier score. Is there a way to visualise the cross validation? Any other suggestions how to perform an visualise the CV.

library(ipred)

df.t <- structure(list(time = c(1796, 1644.04166666667, 
606.041666666667, 1327.04166666667, 665, 2461, 1824, 1554.04166666667, 
601.958333333333, 1638.95833333333), status = c(0L, 
0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L), Comb2 = c("Low", "Low", 
"High", "Low", "High", "Low", "Low", "High", "High", "Low")), row.names = c("1025", 
"1101", "1198", "1330", "1393", "1428", "1473", "1676", "175", 
"1754"), class = "data.frame")


err <- errorest(Surv(time, status) ~Comb2, data=df.t, model=survfit,
     predict=NULL, est.para=control.errorest(k=5))

out:

Call:
errorest.data.frame(formula = Surv(time, status) ~ Comb2, data = df.t.top, 
    model = survfit, predict = NULL, est.para = control.errorest(k = 5))

     5-fold cross-validation estimator of Brier's score

Brier's score:  0.2622
ADD COMMENTlink modified 12 weeks ago by Kevin Blighe71k • written 12 weeks ago by Palgrave20
Please log in to add an answer.

Help
Access

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.
Powered by Biostar version 2.3.0
Traffic: 2115 users visited in the last hour
_