Question: Deseq2: Time series experiment with 2 conditions and 5 time points
1
gravatar for stan
3.0 years ago by
stan70
Pretoria, South Africa
stan70 wrote:

Hi all,

I have done a time series analysis using the steps outlined below and I got differentially expressed genes showing a condition-specific effect (according to the example at http://www.bioconductor.org/help/workflows/rnaseqGene/#time)

> sampleTable<-data.frame(sampleName=sampleFiles, fileName=sampleFiles, condition=sampleCondition, time=time)
> sampleTable$condition <- relevel(sampleTable$condition, "Valor")
> sampleTable$time <- factor(sampleTable$time, levels=c("0","6","12","24","72"))
> ddsHTSeq<-DESeqDataSetFromHTSeqCount(sampleTable=sampleTable, directory=directory, design=~condition + time + condition:time)

> ddsTS2 <- DESeq(ddsHTSeq, test="LRT", reduced = ~ condition:time)

> resultsNames(ddsTS1)
 [1] "Intercept"              "condition_BP1_vs_Valor" "time_6_vs_0"           
 [4] "time_12_vs_0"           "time_24_vs_0"           "time_72_vs_0"          
 [7] "conditionBP1.time6"     "conditionBP1.time12"    "conditionBP1.time24"   
[10] "conditionBP1.time72"

> summary(resTS1)

out of 1840 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)     : 138, 7.5%
LFC < 0 (down)   : 113, 6.1%
outliers [1]     : 4, 0.22%
low counts [2]   : 0, 0%
(mean count < 0.2)

But now I am interested in picking the differential genes between the 2 conditions at each time-point, how do I get these? which contrast should i use specifically and which elements from my resultsNames(ddsTS1) output. i checked ?results but still not sure whether to use the condition effect or the interaction effect?

many thanks,

Stan

rna-seq deseq2 R • 7.5k views
ADD COMMENTlink modified 14 months ago by deni.ribicic0 • written 3.0 years ago by stan70
3
gravatar for stan
3.0 years ago by
stan70
Pretoria, South Africa
stan70 wrote:

So, I found the answer for my question in one of the Deseq2 threads at the bioconductor support forum, a nice explanation is given and the thread is found here: https://support.bioconductor.org/p/65676/#66860 incase it might be of use to someone else.

ADD COMMENTlink written 3.0 years ago by stan70
0
gravatar for deni.ribicic
14 months ago by
deni.ribicic0 wrote:

Hi Stan,

This is a bit late reply, but I am facing actually the same problem. So the answer is basically to separate your time-points and test each and every on certain condition? This seems to be tedious especially if you have a lot of time points!

Cheers, Deni

ADD COMMENTlink written 14 months ago by deni.ribicic0

Hi Deni, i doubt doing so will give you pairwise comparisons between the two conditions? perhaps i am missing something in your statement. The answers provided in the link above worked fine for me. Cheers Stan

ADD REPLYlink written 13 months ago by stan70

I guess you misunderstood what I tried to say, or I haven't explain myself well. Basically I want to test whether there is difference in my microbial community composition between different treatments in a time-series. So i have oil incubation over the period of 64 days. I have sampled at day 0, 3, 6, 9, 13, 16, 32 and 64. What I want to see is whether there is difference at each time-point between oil incubation and control. I was hoping to do it at once, but I could not find a solution for that. So my approach would be to "separate" each day and then do the testing control vs oil incubation basically on 8 different dataframes. Thanks for the response Deni

ADD REPLYlink written 12 months ago by deni.ribicic0
Please log in to add an answer.

Help
Access

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.
Powered by Biostar version 2.3.0
Traffic: 1606 users visited in the last hour