How to convert VarScan TAB format to VCF?
1
1
Entering edit mode
9.2 years ago
scchess ▴ 640

I have some VarScan generated TAB format files (default format) that I want to convert into VCF for IGV visuzaliation. I don't have the source files to regenerate by VarScan again (VarScan has an option for VCF but I don't input files).

Any script that can do that?

genome varscan2 • 5.3k views
ADD COMMENT
0
Entering edit mode

As this does not answer the question on how to convert tab2vcf, I moved it to a comment.

ADD REPLY
2
Entering edit mode
6.3 years ago
marcofraca ▴ 20

Hi, Some years have passed but maybe someone is still interested in it. Here there is a python script that should do the job:

__author__ = "Anand M"
'''
Takes output file generated by VarScan2 somatic programme and converts the formats.
'''
import argparse, math, re
parser = argparse.ArgumentParser(
description="Converts VarScan2 somatic vcf to native format and vice-versa.\nInput is automatically detected")
parser.add_argument('input', help='Input file generated by VarScan2 somatic')
# parser.add_argument('output', help='output file name')
args = parser.parse_args()
# Function to print header line
def printNativeHeader():
"""
:rtype : Null
"""
print(
"chrom\tposition\tref\tvar\tnormal_reads1\tnormal_reads2\tnormal_var_freq\tnormal_gt\ttumor_reads1\ttumor_reads\ttumor_var_freq\ttumor_gt\tsomatic_status\tvariant_p_value\tsomatic_p_value\ttumor_reads1_plus\ttumor_reads1_minus\ttumor_reads2_plus\ttumor_reads2_minus\tnormal_reads1_plus\tnormal_reads1_minus\tnormal_reads2_plus\tnormal_reads2_minus")
# Function to print vcf header
def printVcfHeader():
print("##fileformat=VCFv4.1\n"
"##source=VarScan2\n"
"##INFO=<ID=DP,Number=1,Type=Integer,Description=\"Total depth of quality bases\">\n"
"##INFO=<ID=SOMATIC,Number=0,Type=Flag,Description=\"Indicates if record is a somatic mutation\">\n"
"##INFO=<ID=SS,Number=1,Type=String,Description=\"Somatic status of variant (0=Reference,1=Germline,2=Somatic,3=LOH, or 5=Unknown)\">\n"
"##INFO=<ID=SSC,Number=1,Type=String,Description=\"Somatic score in Phred scale (0-255) derived from somatic p-value\">\n"
"##INFO=<ID=GPV,Number=1,Type=Float,Description=\"Fisher's Exact Test P-value of tumor+normal versus no variant for Germline calls\">\n"
"##INFO=<ID=SPV,Number=1,Type=Float,Description=\"Fisher's Exact Test P-value of tumor versus normal for Somatic/LOH calls\">\n"
"##FILTER=<ID=str10,Description=\"Less than 10% or more than 90% of variant supporting reads on one strand\">\n"
"##FILTER=<ID=indelError,Description=\"Likely artifact due to indel reads at this position\">\n"
"##FORMAT=<ID=GT,Number=1,Type=String,Description=\"Genotype\">\n"
"##FORMAT=<ID=GQ,Number=1,Type=Integer,Description=\"Genotype Quality\">\n"
"##FORMAT=<ID=DP,Number=1,Type=Integer,Description=\"Read Depth\">\n"
"##FORMAT=<ID=RD,Number=1,Type=Integer,Description=\"Depth of reference-supporting bases (reads1)\">\n"
"##FORMAT=<ID=AD,Number=1,Type=Integer,Description=\"Depth of variant-supporting bases (reads2)\">\n"
"##FORMAT=<ID=FREQ,Number=1,Type=String,Description=\"Variant allele frequency\">\n"
"##FORMAT=<ID=DP4,Number=1,Type=String,Description=\"Strand read counts: ref/fwd, ref/rev, var/fwd, var/rev\">\n"
"#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NORMAL TUMOR")
# Function to convert vcf record to NativeFormat record
def makeNativeRec(vcfIp):
"""
:rtype : Null
:type nativeIp: basestring
"""
nativeLine = vcfIp.split("\t")
somaticDict = {'0': 'Reference', '1': 'Germline', '2': 'Somatic', '3': 'LOH', '5': 'Unknown'}
chrom = nativeLine[0]
position = nativeLine[1]
ref = nativeLine[3]
var = nativeLine[4]
normalInfo = nativeLine[9]
tumorInfo = nativeLine[10]
normal_reads1 = normalInfo.split(":")[3]
normal_reads2 = normalInfo.split(":")[4]
normal_var_freq = normalInfo.split(":")[5]
normal_gt = normalInfo.split(":")[0]
normal_dp4 = normalInfo.split(":")[6]
normal_reads1_plus = normal_dp4.split(",")[0]
normal_reads1_minus = normal_dp4.split(",")[1]
normal_reads2_plus = normal_dp4.split(",")[2]
normal_reads2_minus = normal_dp4.split(",")[3]
tumor_reads1 = tumorInfo.split(":")[3]
tumor_reads2 = tumorInfo.split(":")[4]
tumor_var_freq = tumorInfo.split(":")[5]
tumor_gt = tumorInfo.split(":")[0]
tumor_dp4 = tumorInfo.split(":")[6]
tumor_reads1_plus = tumor_dp4.split(",")[0]
tumor_reads1_minus = tumor_dp4.split(",")[1]
tumor_reads2_plus = tumor_dp4.split(",")[2]
tumor_reads2_minus = tumor_dp4.split(",")[3]
info = nativeLine[7]
infoDict = {}
infoSpl = info.split(";")
for rec in infoSpl:
recSpl = rec.split("=")
if not len(recSpl) == 1:
infoDict[recSpl[0]] = recSpl[1]
somatic_status = somaticDict[infoDict['SS']]
variant_p_value = infoDict['GPV']
somatic_p_value = infoDict['SPV']
print("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t" %
(chrom, position, ref, var, normal_reads1, normal_reads2, normal_var_freq, normal_gt, tumor_reads1,
tumor_reads2, tumor_var_freq, tumor_gt, somatic_status, variant_p_value, somatic_p_value, tumor_reads1_plus,
tumor_reads1_minus, tumor_reads2_plus, tumor_reads2_minus, normal_reads1_plus, normal_reads1_minus,
normal_reads2_plus, normal_reads2_minus))
#####
# Function to convert Native to VCF record
def makeVcfRecord(nativeIp):
"""
:rtype : Null
"""
somaticDict = {'Reference': '0', 'Germline': '1', 'Somatic': '2', 'LOH': '3', 'Unknown': '5'}
nIp = nativeIp.split("\t")
chrom = nIp[0]
pos = nIp[1]
id = '.'
ref = nIp[2]
alt = nIp[3]
qual = '.'
filter = 'PASS'
dp = int(nIp[4]) + int(nIp[5]) + int(nIp[8]) + int(nIp[9])
ss = somaticDict[nIp[12]]
ssc = -10 * math.log10(float(nIp[14]))
gpv = nIp[13]
spv = nIp[14]
if ss == '2':
info = "DP=" + str(dp) + ";SOMATIC;" + "SS=" + ss + ";" + "SSC=" + str(
int(ssc)) + ";" + "GPV=" + gpv + ";" + "SPV=" + spv
else:
info = "DP=" + str(dp) + ";" + "SS=" + ss + ";" + "SSC=" + str(
int(ssc)) + ";" + "GPV=" + gpv + ";" + "SPV=" + spv
vcf_format = "GT:GQ:DP:RD:AD:FREQ:DP4"
normal_var_freq = float(re.sub("%", "", nIp[6]))
if normal_var_freq > 10 and normal_var_freq < 75:
gt = '0/1'
elif normal_var_freq > 75:
gt = '1/1'
else:
gt = "0/0"
tumor_var_freq = float(re.sub("%", "", nIp[10]))
if tumor_var_freq > 10 and tumor_var_freq < 75:
gt2 = '0/1'
elif tumor_var_freq > 75:
gt2 = '1/1'
else:
gt2 = "0/0"
gq = '.'
dp2 = int(nIp[4]) + int(nIp[5])
rd = nIp[4]
ad = nIp[5]
freq = nIp[6]
dp4 = nIp[19] + ',' + nIp[20] + ',' + nIp[21] + ',' + nIp[22]
normal_format = gt + ':' + gq + ":" + str(dp2) + ':' + rd + ':' + ad + ':' + freq + ':' + dp4
dp3 = int(nIp[8]) + int(nIp[9])
rd2 = nIp[8]
ad2 = nIp[9]
freq2 = nIp[10]
dp42 = nIp[15] + ',' + nIp[16] + ',' + nIp[17] + ',' + nIp[19]
tumor_format = gt2 + ':' + gq + ":" + str(dp3) + ':' + rd2 + ':' + ad2 + ':' + freq2 + ':' + dp42
print("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s" %
(chrom, pos, id, ref, alt, qual, filter, info, vcf_format, normal_format, tumor_format))
####
def NativeToVcf(inputFile):
printVcfHeader()
vs = open(inputFile, 'r')
for line in vs.readlines():
if not line.startswith("chrom"):
makeVcfRecord(line.strip())
vs.close()
###
def vcfToNative(inputFile):
vs = open(inputFile, 'r')
printNativeHeader()
for line in vs.readlines():
if not line.startswith("#"):
makeNativeRec(line.strip())
vs.close()
####
vsIp = open(args.input, 'r')
firstLine = vsIp.readline().strip()
if firstLine.startswith("##fileformat="):
vcfToNative(args.input)
else:
NativeToVcf(args.input)
vsIp.close()

If it doesn't work you can try this one:

https://github.com/student-t/Varscan2VCF

ADD COMMENT

Login before adding your answer.

Traffic: 2872 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6