MSA scoring tools/scripts
1
1
Entering edit mode
8.1 years ago
Joe 22k

Does anyone know of any tools/scripts that would score a MSA in a sliding window manner?

I want to get the average identity across the length of an operon MSA, so I'm looking for something that gives me back a measure of conservation that I can graph.

I found some old threads on BioStars, but a lot of the linked packages either aren't exactly what I'm looking for, or the links etc are just defunct.

If I have to write this myself (probably with python), does anyone have any thoughts on appropriate ways to score each window?

MSA alignment python • 4.6k views
ADD COMMENT
3
Entering edit mode

Would Shannon entropy plot be helpful?

Just a thought.

Entropy From A Multiple Sequence Alignment With Gaps

ADD REPLY
1
Entering edit mode

Link looks helpful, thanks. Interesting idea to quantify the uncertainty instead of the conservation. Kinda the inverse of my initial thought process but would show the same end result I think.

ADD REPLY
6
Entering edit mode
8.1 years ago
Joe 22k

Wrote my own in the end. Uses some bits of code I found online, but a bit more performant.

# This script will calculate Shannon entropy from a MSA.
# Dependencies:
# Biopython, Matplotlib [optionally], Math
"""
Shannon's entropy equation (latex format):
H=-\sum_{i=1}^{M} P_i\,log_2\,P_i
Entropy is a measure of the uncertainty of a probability distribution (p1, ..... , pM)
https://stepic.org/lesson/Scoring-Motifs-157/step/7?course=Bioinformatics-Algorithms&unit=436
Where, Pi is the fraction of nuleotide bases of nuleotide base type i,
and M is the number of nuleotide base types (A, T, G or C)
H ranges from 0 (only one base/residue in present at that position) to 4.322 (all 20 residues are equally
represented in that position).
Typically, positions with H >2.0 are considerered variable, whereas those with H < 2 are consider conserved.
Highly conserved positions are those with H <1.0 (Litwin and Jores, 1992).
A minimum number of sequences is however required (~100) for H to describe the diversity of a protein family.
"""
import os
import sys
import warnings
import traceback
__author__ = "Joe R. J. Healey"
__version__ = "1.0.0"
__title__ = "ShannonMSA"
__license__ = "GPLv3"
__author_email__ = "J.R.J.Healey@warwick.ac.uk"
def parseArgs():
"""Parse command line arguments"""
import argparse
try:
parser = argparse.ArgumentParser(
description='Compute per base/residue Shannon entropy of a Multiple Sequence Alignment.')
parser.add_argument('-a',
'--alignment',
action='store',
required=True,
help='The multiple sequence alignment (MSA) in any of the formats supported by Biopython\'s AlignIO.')
parser.add_argument('-f',
'--alnformat',
action='store',
default='fasta',
help='Specify the format of the input MSA to be passed in to AlignIO.')
parser.add_argument('-v',
'--verbose',
action='count',
default=0,
help='Verbose behaviour, printing parameters of the script.')
parser.add_argument('-m',
'--runningmean',
action='store',
type=int,
default=0,
help='Return the running mean (a.k.a moving average) of the MSAs Shannon Entropy. Makes for slightly smoother plots. Providing the number of points to average over switches this on.')
parser.add_argument('--makeplot',
action='store_true',
help='Plot the results via Matplotlib.')
except:
print "An exception occurred with argument parsing. Check your provided options."
traceback.print_exc()
return parser.parse_args()
def parseMSA(msa, alnformat, verbose):
"""Parse in the MSA file using Biopython's AlignIO"""
from Bio import AlignIO
alignment = AlignIO.read(msa, alnformat)
# Do a little sanity checking:
seq_lengths_list = []
for record in alignment:
seq_lengths_list.append(len(record))
seq_lengths = set(seq_lengths_list)
if verbose > 0: print("Alignment length is:" + str(list(seq_lengths)))
if len(seq_lengths) != 1:
sys.stderr.write("Your alignment lengths aren't equal. Check your alignment file.")
sys.exit(1)
index = range(1, list(seq_lengths)[0]+1)
return alignment, list(seq_lengths), index
##################################################################
# Function to calcuate the Shannon's entropy per alignment column
# H=-\sum_{i=1}^{M} P_i\,log_2\,P_i (http://imed.med.ucm.es/Tools/svs_help.html)
# Gaps and N's are included in the calculation
##################################################################
def shannon_entropy(list_input):
"""Calculate Shannon's Entropy per column of the alignment (H=-\sum_{i=1}^{M} P_i\,log_2\,P_i)"""
import math
unique_base = set(list_input)
M = len(list_input)
entropy_list = []
# Number of residues in column
for base in unique_base:
n_i = list_input.count(base) # Number of residues of type i
P_i = n_i/float(M) # n_i(Number of residues of type i) / M(Number of residues in column)
entropy_i = P_i*(math.log(P_i,2))
entropy_list.append(entropy_i)
sh_entropy = -(sum(entropy_list))
return sh_entropy
def shannon_entropy_list_msa(alignment):
"""Calculate Shannon Entropy across the whole MSA"""
shannon_entropy_list = []
for col_no in xrange(len(list(alignment[0]))):
list_input = list(alignment[:, col_no])
shannon_entropy_list.append(shannon_entropy(list_input))
return shannon_entropy_list
def plot(index, sel, verbose):
""""Create a quick plot via matplotlib to visualise"""
import matplotlib.pyplot as plt
if verbose > 0: print("Plotting data...")
plt.plot(index, sel)
plt.xlabel('MSA Position Index', fontsize=16)
plt.ylabel('Shannon Entropy', fontsize=16)
plt.show()
def running_mean(l, N):
sum = 0
result = list(0 for x in l)
for i in range( 0, N ):
sum = sum + l[i]
result[i] = sum / (i+1)
for i in range( N, len(l) ):
sum = sum - l[i-N] + l[i]
result[i] = sum / N
return result
def main():
"""Compute Shannon Entropy from a provided MSA."""
# Parse arguments
args = parseArgs()
# Convert object elements to standard variables for functions
msa = args.alignment
alnformat = args.alnformat
verbose = args.verbose
makeplot = args.makeplot
runningmean = args.runningmean
# Start calling functions to do the heavy lifting
alignment, seq_lengths, index = parseMSA(msa, alnformat, verbose)
sel = shannon_entropy_list_msa(alignment)
if runningmean > 0:
sel = running_mean(sel, runningmean)
if makeplot is True:
plot(index, sel, verbose)
if verbose > 0: print("Index" + '\t' + "Entropy")
for c1, c2 in zip(index, sel):
print(str(c1) + '\t' + str(c2))
if __name__ == '__main__':
main()
view raw Shannon.py hosted with ❤ by GitHub

ADD COMMENT

Login before adding your answer.

Traffic: 2667 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6