Question: Microarray analysis using limma multiple groups
0
gravatar for Paul
7 months ago by
Paul70
India
Paul70 wrote:

I am using a dataset GSE1297, which contains gene expression for multiple groups ( Control, Incipient, Moderate,Severe).

My contrast matrix for analyzing the dataset looks like the following

contrast.matrix <- makeContrasts(
  CI = Control - Incipient,
  CM = Control - Moderate,
  HM = Control - Severe,
  levels = design
)

And with the following written code for the dataset GSE1297, I don't get any significant genes with fold change value >=2.

setwd("C:\\GSE1297\\GSE1297\\")

library(limma) 
library(affy) 
library(affyio) 
library(gcrma) 
library(oligo) 
library(pd.hg.u133.plus.2)
library(hgu133plus2.db)
library(annotate)


celFiles <- list.celfiles('C:\\GSE1297\\GSE1297\\', full.names=TRUE)
rawData <- read.celfiles(celFiles)
rmaRes <- rma(rawData)   # normalization using RMA
eset <- exprs(rmaRes)


labels <- factor(
  c(rep('Control', 9), rep('Incipient', 7), rep('Moderate', 8),rep('Severe', 7)),
  levels = c('Control', 'Incipient', 'Moderate','Severe')
)

design <- model.matrix(~ 0 + labels)
colnames(design) <- levels(labels)


contrast.matrix <- makeContrasts(
  CI = Control - Incipient,
  CM = Control - Moderate,
  HM = Control - Severe,
  levels = design
)


fit <- lmFit(eset, design)
fit.cont <- contrasts.fit(fit, contrast.matrix)
fit.eb   <- eBayes(fit.cont)

genes<- topTable(fit.eb, coef=2, n=nrow(eset), adjust="fdr")

write.table(genes,"C:\\GSE1297\\limma_rma.xls",sep="\t",col.names = NA)

Please let me know where am I going wrong. I read many tutorials but unable to find out what is wrong with the code.

I had similar kind of problem in my previous post for which I did not find any answer

C: lesser fold change value using RMA background correction

microarray affymetrix limma • 335 views
ADD COMMENTlink modified 7 months ago by RamRS21k • written 7 months ago by Paul70
Please log in to add an answer.

Help
Access

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.
Powered by Biostar version 2.3.0
Traffic: 762 users visited in the last hour