To clarify, I am a biochemist, trained in molecular evolution since undergrad and I changed my particular field of work to large scale phylogenetic analysis in the grad school.
So, to me, building and interpreting a phylogenetic tree from a family of genes can be considered a trivial task in my subfield (actually, this should be be trivial to any people with a background in biology), but to integrate functional data and increase the scale of the analysis to whole genomes and dozen/hundreds of species would be a little more challenging.
I am really curious since bioinformatics and computational biology has had a fast growing in the last years, many paradigms have changed in what is trivial and what is challenging in his many subfields.
I can't agree with you when you say that building and interpreting a phylogenetic tree should be trivial to any person with a background in biology. Tell me, are you any good at Florescence activated cell sorting? It's a pretty "basic" technique in biology... I don't know anybody good at FACS who can do phylogeny and vis-versa.
I say that because I firmly believe that this should be a skill that any biologist can have. Tools like www.Phylogeny.fr and Mega megasoftware.net) greatly reduce the time and work need to build a phylogenetic tree. Since evolution is a core concept in biology, the foundation to interpret a tree is already explored in most undergraduate courses I know.
In true, for quickly build a tree, it is only a matter to run a BLAST search and from the results page click in the "Distance tree of results" link. Sure, this may not be a good tree built with the most sophisticated methods, but is a good start to a more complete analysis. I am not saying that phylogenetics as a whole is trivial, just the specific task to build a simple tree and interpreting the branching pattern resulting from it.
Without questioning the merit of FACS as an important technique (I know it is), we must agree with this famous Dobzhansky quote "Nothing in Biology Makes Sense Except in the Light of Evolution".
I play around with phylogenetics. It's not simple. And yes, I understand the importance it has in biology. But, sorry, I still can't agree with you. You're view and experience seem limited if you think that every University teaching biology goes into the concept of phylogenetics. In particular there are a lot that focus on medical issues and they really don't care about it.
Trust me, the really don't. And they do very good biology too!
I think we are arguing about a different point of view. Maybe due to a particular bias. I am in Brasil and here all biology courses consider phylogenetics pretty seriously, undergraduates seeking to work in medical issues generally goes to medical school. Anyway, I think that even biomedical students can greatly benefit if they start to think about medical problems from an evolutionary perspective. This will be particularly important with the coming availability of a vast number of sequenced human genomes.
Dude, I'm not saying you are wrong in stating that it is important (you are totally right!!!). I'm saying that you're wrong if you think that every biologist in the world understands or cares about it.
Are you sure you can call someone a biologist if they don't understand a simple phylogenetic tree?
Yes. (This is all I have to say, but I have to add more characters ;)
Ok, so we have different views about what a biologist is, and that goes a long way. :--) Thanks for the discussion.
LOL, sorry I didn't want to add anything but I have to add: please, go tell all those people working on type III secretion systems or biofilms in microbiology and all those working on p53 or c-Myc and other cancer related topics! Trust me, they don't care one bit about phylogenetics ;)
ORLLY?? http://bit.ly/cZ7ssB
or...if you have access to Scopus: http://bit.ly/coSBWK
...and broad results from Scirus: http://bit.ly/cB6eNu
Look at the stats: pubmed "p53 cancer" and compare to "p53 cancer phylogeny" :) And YES, again, you do have some that do phylogeny! But seriously, are you calling the tens of thousands of other papers that don't care about it "Not Biological"?
No, that is not the point.
Sorry to interrupt this "discussion", but the statement that phylogenetics is easy is unjustified. But because it might be me who just cannot grasp the "trivial trees" could you Marcos explain me how I can relate/interpret posterior branch probabilities with bootstrapping values and what to do if they differ significantly? And which of the two approaches for consensus/super-tree reconstruction using majority-rule voting is more relevant evolutionarily i.e. closer to the real evolution.
Marcin, please consider my other comments. I didn't want to say that phylogenetics is easy. But, build a simple phylogenetic tree and interpret it can be. Please, point me where I told that phylogenetics is easy. Remember that not all problems are ultra-hard and need the most sophisticated inference methods or supertrees to be solved. I definitely wasn't trying to be pedant, pretty much the inverse. See my example about buiding a tree from BLAST results, what can be more simple? Yes, it may not be the most accurate, etc, but sometimes you only need that. That is what I am talking about.
Marcos +1: not everyone can understand the subtleties of a phylogenic tree. But any biologist (high school student ?) should understand ( I didn't say 'be interested') what is the underlying idea described in those trees.
Pierre and Marcos, I'll just emphasize the key word in your statement: SHOULD. And that is my point... You all seem to evolve in the world of bioinformatics and you understand phylogenetics. But, when it comes to their own work, many biologists (yes, I insist, they are biologists, even if they don't understand phylogenetics) in wet labs do not understand the meaning of phylogenetic relationships. Yes they understand that you can make a "species tree", but no, they don't relate it to what they do, i.e. they don't understand it and they do not value it.
And Pierre, I have been to high school in the french system. Please tell me when phylogenetics is covered?
I am sorry Nicojo, but what you are asking me for is that I admit that is ok for a biologist not understand a phylogenetic tree. This is like saying it is ok for a chemist not understand the acid/base concepts, as long as he works with nuclear chemistry. I can't agree.
Marcos, would we have Rock music if all musicians had to go to the conservatory and learn Brahms first? I don't think so, but I'm probably wrong... I do agree that this is a very important and fundamental aspect of biology. I'm sorry I made all this fuss over this topic. I'm usually fighting with wet lab biologists to try and make them understand that bioinformaticians are also biologists! In any case, even if I disagree, still I respect your take on the matter, and I'll even use it next time I argue with the others ;). Thanks for your patience with my arguments!
No problem Nicojo, it was a good discussion. All the best.
I'll quote "building and interpreting a phylogenetic tree from a family of genes can be considered a trivial task in my subfield". If your statement is true and indeed building a tree from a family of genes is a trivial task to anyone, then my PhD is a terrible mistake is a terrible mistake because I try to give answers to trivial questions like "what is a family of genes" or "how to interpret a phylogenetic tree".
Nicojo, I was introduced to genetics/phylogeny in my final year of Secondary School (~17 y.o.)
Pierre, je viens de chercher le programme officiel et effectivement il semblerait que c'est maintenant partie intégrante de l'enseignement de terminal S. Mais de votre réponse, j'en déduis que vous êtes bien plus jeune que moi. Cela fait il de moi un "non-biologist"? Je trouve que vous avez une vision très réductionniste si vous arrivez à de telles conclusions.
Are you sure you can call someone a biologist if they don't understand a simple phylogenetic tree? (I am not telling everyone should care about, I would like that, but it is unreal.)